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Linear Control Processes and Mathematical Programming

by George B. Dantzig

Linear Control Process Defined [1], [2]:

We shall consider an "object" defined by its n + 1
coordinates x = (xo, xI,...,xn) whose "motion" described as
[
a function of a parameter "time" (t) can be written as a

linear system of differential equations:
(1) %% = Atx + B

t, Bt are known matrices that may depend on t and

vhere A
us= (u1, u2,...,up) is a control vector that must be chosen
from a convex set, u € U(t) for every 0 < t { T. The time
period 0 { t < T 1s fixed and known in advance. The coor-
dinate x, = xo(t) represents the "cost" of moving the object
from its initial position to xo(t). For this purpose it may

be assumed that xo(o) =0, Defining
(2) x = (0, Xy xz,...,xn)

the object 1s required to start somewhere in a convex domain
x(0) € S, and to terminate at t = T somewhere on another

convex domain x(T) € Sepe

Problem: Find u € U(t) and boundary values x(0) € Sq

x(T) € Sqp» such that xo(T) is minimized.
Assuming u € U(t) is known, the system of differential
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equations can be integrated to yield an expression for X(T)
in terms of X(0) and u € U(t). This is true in general but

t

will be illustrated for the case when At and B~ do not depend

on t; in this case

(3) X(T) = e™x(0) + (;TJT-“AB u(t)dt

where u(t) € U(t) 1s a convex set and where we assume the
integral exists whatever be the choice of the u(t) e U(t)
for 0 Lt T,

Generalized Linear Program [3]:

Our general obJjective is to illustrate how mathematical

programming and, in particular, how the decomposition principle

in the form of the generalized linear program can be applied
to this class of problems. An elegant constructive theory
emerges, [4].

A generalized linear program differs from a standard

linear program in that the vector of coefficients, say P,
associated with any variable y need not be constant but can

be selected from a convex set C. For example:

Problem: Find Max A, p > O such that
(%) Uh + Pu = Q
=1

where Uo. Qo are specified vectors and P ¢ C

convex.
-3-
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The method of solution assumes we have initially on hand

m particular choices Pi € C with the property that
(5) Ugh + P1p1 + Papz oo tP e = Qg

Hy + Mo +...4 Py = 1

has a unique "feasible" solution; that is to say A = A° ,

Ky = 1) > O and the matrix

(6) Bo } [ UO P1 see Pm ]
0 1 eee 1
is non-singular (i.e. the columns of 8 form a basis). Because
P1 € C, the vector 1”0 = g ?1p2 constitutes a solution P = PO
for (4) except that A = 1° may not yleld the maximal 3.
To test whether or not Pp is an optimal solution one

determines & row vector f = ﬁo such that
=0_0
(7) 8% = (1, o,...,0)

and then a value § and a vector Pﬁ+1 € C such that

=0 =0
(8) 6 = Pm+1 = yé& A

where we denote

! This 1s not a restrictive assumption since there is an

analogous method for obtaining such a starting solution, see [L].

-l
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If it turns out that 6 = 0, then P = P0 is an optimal solution.

1r P° 1s not optimal, system (5) is augmented by P o1

After one or several iterations k the augmented system takes

the form of a linear program:

Problem: Find Max A, py 2 O
m+k
(10) Ugh +Z Papy = &
1
m+k

Z By =1 \

1

Letting Bk denote the basis associated with an optimal basic

feasible solution u, = u{ to (10), m® 15 defined analogous
k+1
to (7) and & and P .. ., &nalogous to (8). If it turns
out that § = 0, the solution
m+k

k
(11) Pk=zPipi
is optimal. If not the system is augmented by Rm+k+1 and

the iterative process 1s repeated.

It 1s known under certain general conditions such as C
bounded and the initial solution is non-degenerate (i.e. pg>0),
that 75 =7 and P* - P on some subsequence k and that P = P

)
is optimal. The two fundamental properties of v are

(12) A foana 7P> ' -0 forall Pec.

-5-




The entlre process can be considered as constructive
providing it is not difficult to compute the various Pm+k+1
from (8) with n = otk Another point it that the iterative
process terminates in a finite number of steps if C 1s a
convex polyhedral set and Pm+k constitute extreme solutions
from it. In all cases an estimate is available on how close

th

the k™ solution is to an optimal value of ).

Application of the Generalized Program to the Linear Control Process:

Let us denote
(13) P= £T e(T't)AB u(t)dt

and note that P is an element of a convex set Cp generated
by choosing all possible u(t) ¢ U(t). We specify that

Up = (1, 0,...,0), and denote by A = -X,(T), where X,(T)
1s the coordinate of X(T) to be minimized. Then

(14) X(T) = U + X(T)
We further define QO by

(15) X(T) = e™x(0) + g .

2 the

Substitution of these into (3) formally converts
integrated form of the control problem into a generalized

linear program (k).

K Actually‘Q9 is not given but is an element of a convex set.
To simplify the discussion which follows we assume QO is
& fixed vector.

-6-
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Each cycle of the iterative process ylelds a known row

vector, which we partition
(16) 7 2 [, o]

where nm represents it first n + 1 components corresponding

to P and @ its last component. Since n is known, our choice

for P'm+k+1. 1s

T
(17) nP . = Min S e(T-t)Ay ity at

IT Min e(T’t)AB u(t)y dat
0 ueU(t)

where clearly the minimum is obtained when, in (16), the
integrand for each t 1s selected to be minimum.

Note that
(18) 9, = elT-t)Ap

is a row vector that can be computed for each t. For example,
¢t n can be represented by a finite sum of vectors whcse .
3

welghts depend on t and the eigen values of A. The new

extremal solution P 1s obtained by choosing the control

m+k+1
which minimizes the linear form in u for each t 3 i.e., find

(19) Min(¢t,“u) , u e U(t) .

For example if U(t) is a polyhedral set then (19) is & linear
program. If U(t) i1s the same for all t , then only the

s

ry
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objective form, ¢t nu » varies for different t ; except for
14
the objective form the linear programs are the same for all t .
"
If optimal nm 1is used, then the optimal control u (except

for a set of measure zero) satisfies

(20) Min[@® (t)u] , u e U(t)

where ¢*(t) = n*e(T't)AB . Pontryagin refers to this as

' the maximal principle. It is, as we have just shown, also

& consequence of the decomposition principle of linear program-

ming.

Conclusion:

In our approach the general control obtained for each
cycle is a linear copbination of exactly n+1 special controls
obtained by minimizing for each t, the linear expression (19)
in u for n+1 cholices of m . These special controls may be
referred to as extreme controls. The latter each 1n themselves
do not maintain feasibility, that 1s to say guarantee that
the object will move from X(0) to X(T). Each new linear
combination of these special controls will, however, gener-
ate a new feasible control with a lower va.lue3 for the total
cost XO(T). Under conditions stated this iterative process

is known to converge.

3 If basic solution is non-degenerate.

_8-
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The Lurie Problem On Nonlinear Controls
by Solomon Lefschetz

Some twenty five years ago the mathematical world was presented
by the distinguished mathematical engineer Anatole Lurie [1] with a

set of nonlinear control differential equations of greai generality.

In compact vector-matrix form [2] (with an improvement due to Malkin,
Lefschetz and V. M. Popov) the system looked like this:

X = Ax - bp(o)

(1) ¢ = olo)
¢ =c¢'x - y§

The initial uncontrolled system is

(1) x = Ax

The notations are: x, b, ¢ are n-vectors; A 1s a constant n X n

matrix; greek letters represent scalars, ¢(o) is the characteristic

of the control and one assumes these properties: ¢ is continuous for
all @; ¢(o) =0, o glc) > 0 for g #0; #(0) = Jo¢(a)do (which is positive
}or o #0)o+ » with |g].

The vector x is the _gtate vector; b,c,y are the control para-
meters; & 1is a control variable.

Roughly speaking assuming that the normal position for x is
x = 0, given small deviations of x one hopes that by imbedding the
system (1') into a suitable system (1) one makes (x,£) — O hence x — 0

as t — + o, mathematically speaking in Lurie's monograph there 1s




imbedded the following question now going by his name as

Lurie's problem. To find n.a.s.c. that the parameters b, c, v,

must satisfy in order that all solutions of (1) be asymptotically
stable in the large whatever the choice of an admissible funetion v(a).

This 1s absolute stability.

This is the problem that I propose to discuss as a mathematical

problem. Regarding its practical (R and D) value I must accept the
evidence that a number of outstanding mathematical engineers have

"lovingly" dealt with the problem:

Almost all the work done on the Lurie problem is an application
of a fundamental theorem due to Piapunov plus a noteworthy complement:
due to Barbashin and Krassovskii - lumped in what I will refer to as
the L.B.K. Theorem -- together with a highly significant observation
made by J.P. LaSalle [3]. I must first describe these basic ideas.

The L.B.K. Theorem. Let

(2) u =U(w), U() =o,

(u, are n-vectors) be a real system, of class c! throughout the whole

n space. A sufficient condition in order that every solution u(t) of

(2) -0 as t -+ o is the existence of a scalar function V(u) of

class C1 for all u with these properties

(a) V(u) is positive definite for all u[> O for u # 0,
V(o) =0l;

(b) V(u)> + » with ||u|| (Barbeshin-Krassovskii complement);

(c) since V is of class C' for all u one may determine

dv(u(t))/dt = ﬁ(u) along every solution u(t) of (2)

-12-




and one must have V(u) < 0 on every solution except

us=20,

1

(Class C': the function f(u) = £(u,,...,u.) 1s of class ¢!
1 n

for all u if all the partials af/aun exist and are continuous for all
u,)
We state LaSalle's complement as restricted to our "control"

situation and merely remark that it has a much larger range of appli-

s

cation,

.—baSalle's complement. The L.B.K. Theorem still holds with

V > 0 replaced by 9‘5,0 under the condition that the set V = O contains

no other solution than u = 0,

Observation about Lurie's system. There are actually two

distinct situations corresponding to y # 0 and y = O,

I. v The larger system is of dimension n + 1, This 1is

1nd;rect control. Its practical significance is that it operates

through derivatives and hence makes possible use of a smaller, less

heavy mechanism than the initial system: Minorsky's derivative con-

trol initiated this method.

II. y =0: direct controi. The order of the system is un-

changed. Actually in this case § plays no role and the true system
is

(3) x = Ax - bgp(c'x).

That 1§ controlling is obtained by adding a nonlinear part to the system.

Now if one assimllates (x,f) to the system variable Lurie's

initial equation becomes

-13-



(u) J.C = Ax - b(o(C'x = Yg)

£ = glc'x - y2)

which 1is like (3) but with A replaced by g' 8 that ie by a (nec-
»

essarily) singular matrix. This has led many authors to consider (3)
as the main system. Be as it may we will confine most of our dis-
cussion to (1) and indirect control (y # 0).

Linearization. At all events if absolute stability is to be

obtained the system will have to be at least asymptotically stable
when @(o) = o, u > 0. It will then become linear and asymptotic
stability will merely demand stability of the coefficient matrix.

This attack was first persued and with full success by Yacubovich [5].
It is actually easier to deal first with the direct control (3). The

linearlized system is
(41) x = (A - ube')x

and so the matrix A - ybc' must only have characteristic roots with
negative real parts. The characteristic equation is (zE - A + uybe',
=0 (E: unit matrix). If E, - A = A = characteristic matrix of A,
the relation becomes IAz + ube'| = 0. A simple algebraic manipula-

tion reduces this to the equivalent form

1

tA” -
1 + ue Az =0

Rather simple complex analysis ylelds the following results:
I. No characteristic root of A may lie to the right of the

complex axis. Those on the complex axis must be at most double.

-14-




II., Same result for indirect control save that the root z = 0O
must be at most simple,
III., Bufficient conditions for the asymptotic stability of the
linearized indirect control for small y are: A stable and y > O.

The preceding properties point out the relative simplicity of an in-
direct control with A stable (perhaps only feebly so). This is the

situation that we propose to face in the general case. As a first step

and since g is the variable appearing in ¢(c) it is convenient to re-
%EE place by ¢ the independent variable € of (1). This is done with ease
' and ylelds the equivalent system

2 x = Ax - by (o)
3 (5) o = c'Ax - pp(e)
i p =¢'db + y

Absolute stability suggests recourse to the L.B.K. Theorem. A rather
simple form of Liapunov function is obtained (from a generalization of

one due to Lurie-Poshukov in the late forties) as

(6) V(x,0) = x'Bx + ¢(o)

where the first term is a positive definite quadratic form that is
B 18 a constant symmetric matrix symbolically described by B > O.
Thus V behaves in accordance. with the L.B.K. Theorem. Then we find

-

(7) -V = x'Cx + 2d4'xp + 9’2

-15-




(8) -C =A'B + BA

[o 1
n
&
'
n|
>
)

One wishes to have -V > O for all x,0 and not both zero. This re- :
quires that C > 0. An early result of Liapunov asserts that given
C > 0, there is a unique B solution of (8) and B > 0. Thus we merely
need to remember C > O,

Observing now that (7) is a quadratic form in the variables
X,p absolute stability will be achieved 1f one makes it positive de-
finite in these variables. This may be expressed through two distinet
modes of completing sequences,

(a) by leaving @ unchanged ylelding the author's condition

(9) P> arc”la (hence p > 0);

(b) by modifying ¢ alone -- as done by Yacubovich -- leading

to these conditions:

(10) p > 0; existence of a B such that

A'B+m+% < o.

Thus one may state.

Theorem. N.a.s.c. to have V,V gatisfy the L.B.K. Theorem are equi-

valently (C> 0,(9)} or (10). when this happens the system (1)
(or 5) is absolutely stable.

We come now to the work of V.M, Popov [6] beyond doubt the most

significant contribution to the Lurie problem since Lurie. The system

-16-
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dealt with is the indirect control (1) and the assumption continues to
be that A 1s stable and y > O. Popov proves two central theorems,
Btated with insignificant deviations from Popov they are:

Theorem I. A sufficient condition for the absolute stabil-

ity of the indirect control (1) is the existence of two constants

>0, >0 such that for all real w

{11) Re{(2¢ vy + 1ms)(c'Aj'_;)b + 1—%)] >0

We descrive { )} = P(a,B,w) as the Popov function.

Theorem II, If absolute stability is determined by a Liapunov

function of type "quadratic form in x, ¢ plus g#(g)" then the pre-
ceding theorem holds with this 8 and a suitable a (o maybe zero).

Actually Popov showed that the Liapunov function of Theorem II

must have the fom
V(x,8) = x'Bx + alg - e'x)% + 88(o)

where a, 8 are those which appear in the Popov function.

The state of Theorem I does not bring out the essential simpli-
city of the result., It is of special interest when a # 0. Setting
there 2% = q, one may replace P by P(g,w) = (1+1wq)(c'A;_;b + -f%) =

(1+4wq) (S1 (w) + 182(1»)).

Hence (11) becomes

8, (w) - qwsa(m) > 0.
This means that in the real x, y plane the curve

=17



r:x=5/(w, y=us,(v

has a tangent y = gx through the origin in quadrants 1, 3 and is
otherwise below that tangent. Since the functions S1(m), Sz(w') are
rational (hence T i1s & unicursal curve) the discovery of a tangent
such as y = qx is & rather simple matter -- much simpler than finding

matrices C or B of our earlier conditions.

Open problem as yet unsolved: Is the Popov condition (11)
necessary for absolute stabllity? '
Remark about Popov's striking proof of Theorem I. It passed

up Liapunov functions and replaced them by very advanced Fourier in-
tegral technique. Curiously a transfer function, & la linear theory,
makes its appearsnce in the inequality (11). For Popov's function

may be written

(2ay + Bz)(e'a;'d + 1)1 = 10
and

_ aqp=1
T(z) = c'A, b+%

is the transfer function gp(g(t)) to g(t) in (5).
From an R & D viewpoint a "sufficient condition" such as in

Theorem I 1s definitely more important than a necessary one. The latter

is perhaps more important as mathematics that as R & D information., It

may be added also that the proof of Theorem II is far easler and
simplier than that of Theorem I.

-18-




Hardly had Popov's expression (11) appeared on the scene, than
& number of analogous results began to appear. They al;va.ys involved
some pair, V, \'r and in principle proceeded along much simpler lines
than Popov's first theorem. We will just describe one very interesting |
result emtodying a noted lemma of Yacubovich [7] strongly improved by
Kalman [8] and still further advanced by Kenneth Meyer [9]. We will
refer to it as the Y,K.M., lemma (Meyer's version with parts omitted.)

The Y.K.M, Lemma. Assume A stable and let b, k, be real

n-vectors and r a non-negative constant. If

a1
1'+2Rek'Aiwb > 0

for a&ll real w then there exist two n X n matrices B> 0, D > 0, and

& real n-vector q such that

A'B + Ba=-qq' - D
£

Bbp - k= ¢" q.
The lemma with "> 0" rather than "> 0" was proved by Yacubovich., Under
the special assumption of complete controllability of (A,b) and complete
observability of (A',e) it was extended (with new proofs) by Kalman.
The complete controllability and observability conditions were recently
removed by Kenneth Meyer.
| If one takes

2

then the inequality of the lemma reduces to Popov's inequality (11).

-19-




One has then this result of Yacubovich and Kalman:

Theorem. Popov's inequality with

() a>0, B>0, a+8>0 =
(b) >0 ort =0, % BA'c +ayc =0, a >0

are n.a,s.c. for the existence of the Liapunov function of the second

theorem with merely -V > 0.

Beyond the Lemma and under certain complicated complementary
conditions given by Kalman one may show, using LaSalle's complement,
that absolute stability is achieved.

If one takes Popov's inequality strictly as > O one may show
that V and -% are both positive definite and hence, one has absolute
stability,

Noteworthy work has been done recently by the mathematical
engineer R. W. Brockett and his young associates (see[7D. Let p(D),
q(D) be real polynomials of respective degrees n and at most n-1 in
D = E% . With p(o) as before the general problem which they have at- 2

‘tacked is the scalar real differential equation

(12) p(D)x + ¢(d) =0, o = q(D)x.

and its absolute stability, o

A description of one of his results -- his Theorem 4 -- will

give an idea of his general procedure,

Theorem. Let p(D) = Dk{5), where all solutions of h(D)z =0

are asymptotically stable. Then if there exists an r > O such that

-20-
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m(z) = (1+rz)q(z)/p(z) has the property Re m(z) > O when Re z > O,

(12) is absolutely stable.

To indicate the nature of Brockett's Liapunov function for this
case we need a few special notations.

(a) If g(z) is a polynomial let go(z) denote the polynomial

made up of its even terms;

(b) 1r g(z) is real, even, and such that g(iw) > 0 for all
real w, then (Wiener) g(z)~ = k(z)k(-z), k(z) # O when Re z # 0, Set
g(z) = k(-z);

(¢) denote by X the real vector whose components are x(t),
x(t), %(t),...,x0 N (4),

With integration in the space of X the form of Liapunov func-
tion given by Brockett is

t(X) - .2
v(Xx) = {(o) ((a+gD) q(D)z * p(D)z + ((a - B(D)q(-D)p(D)) z)

+ gDq(D)zf(q(D)z) }at

One may show that V is positive definite, % negative semi-definite for
all admissible ¢ then using lLaSalle's complement one proves absolute
stability. Technique of similar nature has been used, notably by

Willems in an investigation of more restricted functions g(g): of a
differentiable monotone increasing T(°)' It may be pointed out that

the first term of the expression for V(X) (term without g) is essentially
& quadratic form in X while the second term 1is really the same as the

term §(g) of the earlier Liapunov functions.,

<21 =




A number of authors have investigated an admissible class of
characteristic functions p(e¢) limited by an additional inequality
0 < Qé-q-) < X (finite). This has been dealt with at length in the
recent book [8] by Aizerman and Gantmacher, which incidentally contains

a very extensive bibliography. The Popov expression (11) is replaced

by
P(G., B, WJX) = P(G., B, (D) + a_xﬂ.l .

The modifications for indirect control are moderate, but not so for
direct control, which require replacing the pair (V, V) by (V,W)
where W is a more restricted function then V, and depends largely

on X,

-22-
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The Bang-Bang Principle
by Lawrence Markus

1. The physical significance of the bang-bang principle. The

bang-bang principle states that any response of a controlled
system, which can be achieved by an arbitrary controller
varying over the total control domain, can equally well be
achieved by a controller which is restricted to the extreme
values of the control domain. The term "bang-bang" refers to
the abrupt switching of the controller fram one of these
extreme values to another. In engineering design it is often
simpler to construct a control device with only a finite
number of positions (say, the vertices of a polyhedron) rather
than a continuum of possible positions (say, all the points
of the solid polyhedron), and hence the bang-bang principle
is of great practical importance - when it is applicable.

The bang-bang principle is not just & general principle
but it is, in fact, a collection of precise mathematical theorems
which center around a single physical concept. The basic
mathematical result was obtained in relatively recent times
(1940) by the Soviet scientist A. Liapounov [19], who thereby
injected a new method - and also a new Liapounov - into
control studies. The immediate application to control theory

was presented by J. LaSalle [16] in a fundamental paper in
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1960, Sirce that time a great deal of research has developed
the applications of the bang-bang principle to control problems,
both linear and nonlinear.

As a simple physical control process consider the mechanics
of rowing a small boat across a smooth lake. The controlling
force is produced by the two oars and the response is the
heading and movement of the boat. If both oars are pulled
simultaneously with equal force, the boat advances in a
fixed direction. The direction can be changed ir = controlled
manner by using the oars together with each stroke bdbut pulling
one oar more strongly than the other. By controlling the
difference in strength of the two oars, a continuum of control
possibilities arises.

Now consider the same boat contrclled by "bang-bang
rowing"., Here the oars act independently, but always with the
fixed maximal pulling strength. The control in direction is
effected by using one oar more frequently than the other.

Thus the control force with each rowing stroke is always one
of two extreme values (maximal right or maximal left), but
any required heading of the boat can be achieved, even 1f not
as smoothly as before.

~ Thus in the bang-bang control we replace a spatial
variation of the controlling force (the resultant rowing’
stroke can range over a continuum of angular directions) by

a temporal variation of the controlling force (the frequencies
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of left and righkt oar strokes). From this viewpoint the bang-
bang principle resembles ergodic theory, although no precise
interconnection is known relating these two disciplines.

2. The bang-bang principle for linear processes. Consider
t'e first order vector differential system, or control process,

L) £=Ax +Bu.

E‘ Here x(t) is the real n-dimensional state vector at each
instant of time t, and u(t) is the real measurable control
m-vector. The coefficients A and B are real constant matrices.
Ve fix the initial state Xq in the real vector space R?
e and choose various control functions u(t) on 0 < t < e to
determine the response x(t) as the solution of the initial

4 5

value prodlem
HE=ax+but), x(0)=x, .

The controllers are arbitrary measuradble functions with values

restricted to a prescrided nonempty compact restraint set

t ncR® . PYor each time t; 2 0 define the set of attainability
3" K (t,) to consist of all endpoints x(t1) to responses initia-

” ting at x,, for all possible controllers u(t) cflon0 <t <t .

Defs~ition. Consider the linear control process in R®

L) £ =Ax + Bu

;531' with initial state x, at t = 0, and compact restraint set
-27-




fecRrR®, Por each compact subset Z € fQl we deline the set of

attainability Kz(t.,) from x, by controllers u(t) € Z on

0
0<¢t < t, . Ve state that Z has the bang-bang property in

case K (t,) = Kn(t1) for all ¢, > 0,

If Q is a compact convex set, then Kn(t1) is also compact
and convex., This follows from the variations of parameter

formula for the response

¢
x(t, = e“xo + oft J e'A'Bu(s)do .
0
Since the map

A2
u(*) -..£ e'A'Bu(u)de: L. (0,1:1) - BP

is linear and compact, the properties of convexity and
compactness of N are shared by Kn(t1). The following theoream
shows that Kn(t1) = Kﬁ(n)(t1) » Where H(R) is the convex hull
of 1 . Hence Kn(t1) is compact and convex even if Q is an

arbitrary compact set.

Theorem 1. Consider the linear control process in r?

L) £ =Ax + Bu

with initial state x, at ¢t = 0 , and compact restraint set

fc R, let Z be a compact subset of N with the same comvex hull

Then Z has the bang-bang property X (t,) = Xq(t,) for all %, 2 O,
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The proof of theorem 1 was presented dy L., Meustadt [22]
+u0 involves intricate functional analysis and the basic
theoren of A, Ifapounov, which will be discussed in Section 3,

Sorollary 1. let Z be the boundary M in X', Then ’ has
Ahe bang-bang property.
Corollary 2. let Nl be a convex polyhedron in K", and let Z

be the set of vertices of . Then 7 has the bang-bang property.
The theorem of laSalle corresponds to Corollary 2 in the

case where fl 1s an a-cube,

A somewhat more general and very recent result [23]
asserts that the set of extreme points of H(fl) has the bang-
bang property (even 1f this set is not compact).

The converse of Theorem 1 cannot hold in general. TFor
suppose B = 0, then any subset of N has the same (unique)
response and so possesses the dang-bang property. In order to
consider processes in which the controls have some reasonable
effect we introduce the concept of a (completely) controllabdle

process.
Definition. Consider the linear process in R-

L) 2 =sAx + Bu

with no restraint on the controllers. Suppose for each pair
of points X9 and x, in B" there exists a bounded measurable
controller steering x, to x, on some 0 < t < ¢t,. Then L

" 1@ (completely) controllabdle.
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It 18 well known [14] that L is controllable if and only if

2

rank [B,AB.A B,ooo'An.1B] =1 ,

The condition that the nxmm controllability matrix should
have maximal rank n is "genexric"; that is, every linear process
can be approximated by controllable processes and also the
property of controllability is maintained under perturbation.
From this algebraic condition it follows that .L is controllable
if and only if & = -Ax - Bu is controllable, and this obtains
Just in case each initial state X, € R can be steered to the
origin in a finite time duration dy some dounded measurable

controller. We prove a slight extension of this result,

Theorem 2. Consider the linear process in i

L) £ =Ax + Bu

with initial state X, at ¢t = 0 and compact restraint set N

with interior in R . Then the set of attainability K(tm) is
a_convex body (with interior) for each t, > 04f and only if

2

rank [B,AB.A B’ooo.An.1B] = N .

Proof.
The set K(t,) is o compact convex set in R°. First assume
that the rank of the controllability matrix is less than n,

Then there is a unit row n-vector v such that

'B = 'AB = 'AZB B g0 = VAn-1B = 0
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: Using the Cayley-Hamilton theorem we compute
VA‘B.O for k-n, n+1' so e .
Hence
ve’¥B = 0 for a11t > o0.
But x(t,) is the set of all endpotnxa
1
At At
x(t,) = e 2. + e | f e'A’Bu(a)da
e 0 0
for controllers u(t) €N on 0 <t < t,. Thus
At,

and 8o K(t,) is a translate of a subset which lies in the
hyperplane orthogonal to v. Therefore K(t1) has no interior
points.

Conversely assume that the controlladility matrix has
rlnk‘n « Suppose that K(t,) has no interior and that there
1.‘§.nn1t veotor v for which

At
v[!(t,) -0 120] = 0, for some t, > 0,

In this case

t
I 1v eA(t1 2) B(uo + u(s))as = 0

0
where u, is a constant in the interior of 0 and u(s) is an

arbitrary controller near sero. Then, for u(s) = 0 we obtain
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Y1 Alty-e)
] ve B U, de = O

0
and 8o

t
I 1v eA(t1 ’)B u(s)ds = 0,
0

Since this equality holds for all small controllers,

A('l:1-a):B

ve "0 om0 <8<t .

Set s = ¢, to get vB = 0 . FNext differentiate with respect

to 8 and set 8 = ¢, to get v AB = 0. Continue in this way to
obtain

YB = VAB = vYA°B = ... = vA""'B = 0

But this contradists the hypothesis that the n rows of the
controllability matrix are independent. Therefore K(t,) is

a convex body. Q.E.D,

Corollary. The linear process . is controllable in R® (with

no control restraint) if and only if

2

rank [B’AB’A B.ooo.An-1B] =N,

Proof,
Assume that the controllability ma¢rix has rank n and
take the unit m-cube centered at the origin as the restraint
set . Then, using controllers in N cn 0 ¢ 5 1, ijotn
steer the origin Xo = 0 to any point x, in a n.ighboihood
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N. By the linearity of £, c>ntrollers in kA steer x5 to all
po;ntl in kN, fork = 1,2,3,... « Thus Xy can be steered
to any point x, € »® by a bounded controller u(t) on 0 < t < 1,

Since this same conclusion holds for
L) %= -Ax - Bu,

we oan reverse the time sense and steer x, to X, = 0. Hence.L
is controllable,

Next assume that the rank of the controllability matrix
i8 less than n. In this case there is a nonvanishing vector
v such that

YB = VAB = VAB = ... = vA"'B = 0 .

But this implies that veAtB ® 0 and ®s0

%y
v J‘ .eA(t1-.)Bu(a)de =0,

Hence the origin X = O can be steered only to points in the
hyperplane orthogonal to v, and £ fails to be controllable.
Q. E. D.

Theorem 3. Consider the controllable process in R®
“#—

L) 2=Ax + Bu

with initial state x, at t = 0, and compact restraint set A

with interior in R‘. Assume rank B = m. Then a compact subset

Z € 0 has the bang-bang property if and only if H(2Z) = H(Q).
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Proof.

By theorem 1 a compact subset Z with H(Z) = H(fl1) has the
bang-béng property, and we prove the converse under the above
hypotheses.

Assume H(Z) ¥ H(N) so that there exists a point in H(NN)
which is separated by a hyperplane from H(Z). Thus there exists
a supporting hyperplane © to H(Q) such that n fails to meet H(Z).

Now let P, be a boundary point of Kn(t1) = KH(Q)(t1), for
any fixed t, > O. ILet n, be any external unit (row) vector
normal to a supporting hyperplane to Kn(t1) at P,. Then
any controller u,(t) < H(R) on 0 < ¢ £ t, which steers x, to
PO necessarily satisfies |

At, At, It1

nole 'xo + e e~Ap u,(s)ae]

%
At At, 1
2 nple 110 +e | g e"'Bu(l)dn] '
where u(t) ¢ H(1) is an arbitrary controller. Thus uo(t)
satisfies the maximal principle [4]
At

At
e lo~At Buo(t) = max n, e 1 o=A% gy ’

"o u € 5(A)

almost always on 0 < t £ ¢, .
Consider the lineai map of R® into R®

ﬂ-’ﬂBo

Since rank B = m, Wwe can find a (row) vector n, such that
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n,B is along the outward normal to the hyperplane n. This

means that

At

e ! e'AtBu

u :alx!m) M |
assumes its maximum, for each t near t,, only on H(N) - H(Z).
Let P, € ) Kn(t1) be a point where n, is an outward
directed normal to Kn(t.,). Then P, cannot be attained by any
oontrollpr restricted to H(Z), since any such controller cannot
nti.ﬁl the necessary maximal principle. Therefore Kz(t1) #
ln(t1) apd Z fails to have the bang-bang property. Q.E.D.

Corollary. If 1 is also convex, then a compact Z € N1 has ihe

bang-bang property if and only if 2 contains all the extreme
points of fl.

3 A, ILispounov's theorem and some generaligations. In this

ncfiop we present a discussion of Liapounov's theorem on the
convoxity of the range of a vector measure.

Iet y(t) be a bounded measurable n-vector function on
0<t <1, LetB be the o-algebra (Borel o-field) of all
Ledesgue measurable subsets of 0 < ¢t < 1.

Theorem 4 (A. Liapounov). PFor each set E €B consider the
point in R"

Tp = i y(¢)at ,
and let X bde _th; set of all such points Xp. Then K is convex
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and compact. ?ﬂ
i
Proof (sketch). i
‘
First construct a continuous family of sets .’Ja eB i«x
0<a<1withD <D if and only if a, € a,, and the
= 1 a, @ 1 = %2

Lebesgue measure of Da is
P(Da) = O . :

Such a continuous family is easily obtained [8] as a maximal, :
linearly ordered (by inclusion) chain of sets in B, with the

aid of the axiom of choice.

NPT
R 5

Al

We use D and the first component y4(%) of y(t) to

construct a c-algebra 3.1 c 3 whereon :
[ ! :
- y,(t)at = p(E) . y,(t)at .

To construct A1 first take E, € 3B whereon
r 1 [‘ 1
1 y(t)at = Z J y,(t)at, w(B,) =72,

The existence of E1 follows from the properties of the family

R Y,

Da' Ngnely,
M(Dy = Dy_y/2) = 1/20n1/2 L a £ 1

and the integral of y,(t) over (Da -D _4 /2) is a continuous
function g(a) such that"

1
g(1) + g(1/2) _ 1/2 .{ v, (t)at .
2 o !
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Thus for some intermediate a, on 1/2 < o < 1 we obtain
K(a1) = 1/2 Jﬂ y,(t)at , as required.

Next pagtit:lon E, and E, = [0,1] - E, into two appro-
priate ‘ubaeta E3,'— E4 and E5, E6 on each of which

1
£y1(t)dt = % {) y,(t)dt , H(E) = 1/4 .

Continue this partitioning to obtain a countable collection
of such sets E and then let A, be the c-algebra generated by
all these sets. Since I y,(t)at and H(E) are each signed
' E
measures defined on A.l, and since they are equal (up to a
constant factor) on the algebra generated by the above
countable family Ey By E3’ E4, ES’ Bgs e+ » We obtain

r 1

J y1(t)dt = u(E) I y,(t)dt ’

E 0
for all T € A,.

Next repeat the above argument to select c-algebras

*n €A €. c€ A, c3 such that
' 1

I y(t)at = u(E) fy(t)dt

E 0

for E € An.
Finally we prove the convexity of the set K. Suppose ]?'1
and F, =re in B with

Iy(t)dt =a,, jy(t)dt = a, ,
7 L)

and coconsider the intermediate point

\a, + (1-x)a2 , 0 < f 1 s
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Consider the 2n-vector

yHE) = [7(8) %,(4)

with the characteristic functions X,(t) of F, and Xo(t) of Py,
Iet A cB be a 0-algebra whereon

i . a
I y*(t)at = u(E) I y*(t)at = u(E) [ ! ] .
E 0 8 i

Let D, with p(D ) = a be a continuous family of sets in A and

“afine
- P = (D, nF) U [([0,1]-T,) NPF,] .
Then
£ y(t)at = i;y(tix1(t)dt fo,1£-n\’(t)x2(t)dt
8o

r
;y(t)dt = da, + (1-1)a, ,

and hence K is convex.
The compactness follows from arguments of functional
analysis which we shall not indicate here. Q.E.D.

Remarks. Let us indicate the proof of the convexity of I-n(t1),
as in theorem 1. Iet u, (t) and m(t)cn ond 1 0<¢2 t, be
two controllers with responses x,(t) and x,(t) initiating

at x, when ¢ = 0. Yor each measurable subset D < consider

the real 2n-vector
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. Lf \‘pm‘mﬁ

A’ B u, (s)ds

D) =
WD) 1‘; o~A8 3 uy(s)as

The vector-valued set function w(D) has values
- )
wl) = l::] and w(g) = [o].
Dy Iiapounov's theorem there is a set D, cJdfor which
Ta
w(Dx)-l rb andw(J-Dx)-U-x) [ b} .

Define the controller, for 0 < < 1,

u‘(t) for t € D,

) - u,(t) for t €J -1,

Then the corresponding response leads to

xl(t1) = ou'xo + 9“1 [gle“‘“ Bu,(s)ds :DID:-M Buy (s )ds ]

ﬁ(t,) = xxa(t1) + (1-l)xb(t1)' .

Thus xa(t1) is convex for an arbitrary compact restraint set Q.
We note that the bang-bang principle, say in the case of
a convex polyhedron i, merely asserts that the required control
can be attained dy a controller resting at each vertex of Q
for some measurable duration of time. Tt is of great interest
to f£ind bang-bang controllers which are piecewise constant;
which have only a finite number of switches rather than a
complicated measurable switching set. Such results have been
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obtained by H, Halkin [9,10,11] and N. Ievinson {18]. 1In
their analyses the coefficient matrices A(t) and B(t) can
vary analytically with time and need not be constant. For
arbitrary integrable coefficient matrices the bang--bang
principle holds, but the switches may well be recessarily
infinite.

Another interpretation of the bang-bang principle
restricts the controllers to be extreme functions rather than
functions with values in the set of extreme points of fi. That
is, let N be a compact convex set in R™ with extreme point set
W. Then theorem 1 asserts that V-V has the bang-bang property,

K_(t,) = Kq(t,) for ¢, > 0.
w

The set M, of all measurable controllers (almost always) in Q
is a weak * compact, convex set in the space N of all essen-
tiallf bounded measurable m-vector functione on~._9 0t <ty
A theorem of S. Karlin [15] asserts that the extreme points

of the set M, are among the controllers having values in ;.

If W = W, the extreme points of 'ﬂ are precisely the controllers
in W,

4. Fonlinear bang-bang phenomena. Consider the nonlinear

control process

4 x = £(x,u)
where f(x,u) € C' in RP*®, The stats x(t) at each time t is
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a real n-vector and the control u(t) is a measurable m-vector
function with values in some restraint set Qi € R®, Te seek

to steer an initail state xq to the origin x, = 0 in some
finite time interval 0 < ¢t < ¢, iay a controller in f}. Since
the process is nonlinear, the response x(t) to a controller
u(t) € on 0 < t < t, might not exist for the entire duration,
and hence it is reasonadble to consider just strictly local
control problems for short time durations,

Example. Consider the scalar process in R'
X =u+ 0l

with restraint fi: |u| < 2. Then, since the linear approxima-
tion near x = u = 0 is the controlladble process ; = u, each
point Xq near x, = 0 can be steered to the origin by a controller
in 1. However, if we use only dang-bang controllers with
ja(t)] = 2, then x(t) > 0 and so points Xg > O cannot be
steered to the orig;ln.

The difficulties illustrated by the above example are
resolved by the following theorem [20,21].

Theorem 5. Consider the control process in R?

Q) x = £(x,u) in C' in R"*E,

1) £(0,0) = 0
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2

2) rank [B,AB,A°B,...,A"" 2] = n

2£(0,0)

> u

3x
Let x be a fixed convex polytope with the o in its

“terior in Rm. Then there exists an¢ > 0 and a mﬂmoﬂ
N of x, = 0 such that:
each initia)l state X, € N can be steered to X, = 0

where A =

by a measurable controller u{t) cn 0 < ¢ < 1 with m
only in the finite set of vertices of the similar polytope ¢=.

Finally let us turn to the nonlinear global control prodlea
with bang-bang controllers. To insure global stadility adbout
the origin x;, = O we impose the classical hypothesis of A, X.
Liapounov. The bdang-dbang analysis is treated by the methods
of A, Iiapounov. In this manner we are able to obtain the
frllowing result.

Theorem 6. (Liapouncv-liapounov). Consider the comtrol
process in Rn

4) % = £(x,u) in C' §p X*,

Assume that there exists a real function ¥(x) iu C* ia ®*
such that:
1) V(x) >0 for x # 0 and V(0) = 0

2) 1lia V(‘) = ™
x| <=
3) X el(x,0) cOgorx#0.
Bxi
-42-




Also assume
4) 1£(0,0) = 0

2

; 5) rank [B.AB’A B’ooo.An.1B] s=n

ope 4 = 22(0:0) . 22(0,0) _
shoge & = 0% gt 3.

Then there exists an ¢ > O such that every initial point
X0 € R oan be steered to x, = 0 in a finite time by a measur-
able ocontroller u(t) each of whose components takes on only
ﬂ"o three values +¢, -¢, and O ,

e e -y o e e e e e . e 3 —
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13. ABSTRACT 5.
FoThis Scientific report summarizes the three lectures presented at the First Session. &
of the Lecture Series in Differential Equations, sponsored by the AFOSR, and the

Graduate Consortium of American, Catholic,,Georgetown, George Washington and Howardi
Universities of the District of Columbia.and the University of Maryland, and held = ~
at Georgetown University, 2 October 1965.

The First Session, on Control Theory, included lectures by Professors G. B. Dantzig)
S; Lefschetz and L. Markus. - P;ofessor Dantzig illustrated how mathematical pro=- i
gramming, in,.a particular a generalized linear program, can be applied to a linear . .
control process. The "problem'" takes the form of minimizing the "cost" of meving
an "object" from one convex domain to another by proper choice of a control vector. | .
and boundary conditions.

Professor Lefschetz dealt with the Lurie problem on nonlinear controls, i.e., the = ¢
determination of necessary and sufficient conditions such that all solutions of a "' @
set of general nonlinear control differential equations are absolutely stable in

the large whatever the choice of the admissible (function) characLerlstlc of the
control.

Professor Markus discussed the "bang-bang' theory of control as a physical concepc

and as a collection of precise mathematicel theorems. The bang-bang principal statgﬁ%.
that any response of a controlled system which can be achieved by an arbitrary con- '
troller restricted to the extreme values of the control domains. Theorems presented
relate both to linear aad nonlinear control processes.
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